Using Mendelian inheritance errors as quality control criteria in whole genome sequencing data set

نویسندگان

  • Valentina V Pilipenko
  • Hua He
  • Brad G Kurowski
  • Eileen S Alexander
  • Xue Zhang
  • Lili Ding
  • Tesfaye B Mersha
  • Leah Kottyan
  • David W Fardo
  • Lisa J Martin
چکیده

Although the technical and analytic complexity of whole genome sequencing is generally appreciated, best practices for data cleaning and quality control have not been defined. Family based data can be used to guide the standardization of specific quality control metrics in nonfamily based data. Given the low mutation rate, Mendelian inheritance errors are likely as a result of erroneous genotype calls. Thus, our goal was to identify the characteristics that determine Mendelian inheritance errors. To accomplish this, we used chromosome 3 whole genome sequencing family based data from the Genetic Analysis Workshop 18. Mendelian inheritance errors were provided as part of the GAW18 data set. Additionally, for binary variants we calculated Mendelian inheritance errors using PLINK. Based on our analysis, nonbinary single-nucleotide variants have an inherently high number of Mendelian inheritance errors. Furthermore, in binary variants, Mendelian inheritance errors are not randomly distributed. Indeed, we identified 3 Mendelian inheritance error peaks that were enriched with repetitive elements. However, these peaks can be lessened with the inclusion of a single filter from the sequencing file. In summary, we demonstrated that erroneous sequencing calls are nonrandomly distributed across the genome and quality control metrics can dramatically reduce the number of mendelian inheritance errors. Appropriate quality control will allow optimal use of genetic data to realize the full potential of whole genome sequencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Variant and De Novo Mutation Identification on Pedigrees from High-Throughput Sequencing Data

The analysis of whole-genome or exome sequencing data from trios and pedigrees has been successfully applied to the identification of disease-causing mutations. However, most methods used to identify and genotype genetic variants from next-generation sequencing data ignore the relationships between samples, resulting in significant Mendelian errors, false positives and negatives. Here we presen...

متن کامل

Whole genome sequencing to identify host genetic risk factors for severe outcomes of hepatitis a virus infection.

Acute liver failure is a severe, but rare, outcome of hepatitis A virus infection. Unusual presentations of prevalent infections have often been attributed to pathogen-specific immune deficits that exhibit Mendelian inheritance. Genome-wide resequencing of unrelated cases has proven to be a powerful approach for identifying highly penetrant risk alleles that underlie such syndromes. Rare mutati...

متن کامل

The struggle to find reliable results in exome sequencing data: filtering out Mendelian errors

Next Generation Sequencing studies generate a large quantity of genetic data in a relatively cost and time efficient manner and provide an unprecedented opportunity to identify candidate causative variants that lead to disease phenotypes. A challenge to these studies is the generation of sequencing artifacts by current technologies. To identify and characterize the properties that distinguish f...

متن کامل

Using Mendelian inheritance to improve high-throughput SNP discovery.

Restriction site-associated DNA sequencing or genotyping-by-sequencing (GBS) approaches allow for rapid and cost-effective discovery and genotyping of thousands of single-nucleotide polymorphisms (SNPs) in multiple individuals. However, rigorous quality control practices are needed to avoid high levels of error and bias with these reduced representation methods. We developed a formal statistica...

متن کامل

Value of Mendelian laws of segregation in families: data quality control, imputation, and beyond.

When analyzing family data, we dream of perfectly informative data, even whole-genome sequences (WGSs) for all family members. Reality intervenes, and we find that next-generation sequencing (NGS) data have errors and are often too expensive or impossible to collect on everyone. The Genetic Analysis Workshop 18 working groups on quality control and dropping WGSs through families using a genome-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014